

Overview of Energy Storage Technologies for Space Applications

Rao Surampudi Jet Propulsion Laboratory Pasadena, CA 91109

42nd Power Sources Conference Philadelphia, PA June 12-15, 2006

Outline

- Background
- Current State-of-Practice (SOP) Energy Storage Systems
- Future Space Missions and their Needs
- Advanced Energy Storage Systems Under Development
- Summary and Conclusions

Energy Storage Systems: Space Applications

Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960

Space Applications of Energy Storage Devices

- Energy storage are used space missions to:
 - Provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, astronaut equipment
 - Store electrical energy in solar powered
 orbital and Surface missions and provide
 electrical energy during eclipse periods
 - Meet peak power demands in in nuclear
 powered rovers, landers and planetary orbiters

Performance Envelope of Electrochemical Power Sources

Service life dictates the choice of energy storage technology

Energy Storage Systems: Applications

System	Application		
Capacitors – Double-layer, ultra super	RPS Powered Missions.		
Primary Batteries – Ag-Zn, Li- SO ₂ , Li-SOCl ₂	Launch vehicles, probes, and astronaut equipment.		
Rechargeable Batteries - Ni-Cd, Ni-H ₂ , Li-Lion	Earth / Mars Orbital Missions; Outer / Inner Planetary Orbiters; Surface Missions; Astronaut Equipment		

System	Application
Fuel Cells - Alkaline, PEM	Surface Missions; Shuttle / CEV
Regenerative Fuel Cells – Alkaline, PEM	Lunar Habitat; Mars Habitat
Flywheels – Energy only; Energy and momentum	Earth Orbital Missions (GEO & LEO);

State-of-the-Practice Energy Storage Devices

SOP Space Batteries

Primary Batteries

Li-SO₂ Mars Exploration Rover (MER) Battery

Li-SOCl₂
Pathfinder
Lander Battery

Rechargeable Batteries

Ag-Zn Battery
Mars Pathfinder
Lander

Standard Ni-Cd Solar Max Battery

CPV Ni-H₂Battery Odyssey 2

Li-lon Battery MER Rover

SOP Fuel Cells

Polymer Electrolyte Membrane (PEM) Fuel Cell (Gemini)

Alkaline Fuel Cell (Apollo)

Alkaline Fuel Cell (Space Shuttle)

Energy Storage Systems: Current State-of-Practice

System	Technology	Mission	Specific Energy, Wh/kg	Energy Density, Wh/I	Operating Temp. Range, °C	Cycle Life	Mission Life (yrs)	Issues
Primary Batteries	Ag-Zn Li-SO2, Li-SOCl2	Delta Launch Vehicles Cassini Probe MER Lander Sojourner Rover	90-250	130-500	-20 to 60	1	1-9	Limited operating temp rangeVoltage delay
Rechargeable Batteries	Ni-Cd, Ni-H2	TOPEX HST Space Station	24-35	10-80	-5 to 30	> 50,000 @25%DOD	>10	Heavy and bulkyLimited operating temp range
Adv. Rech. Batteries	Li-lon	Spirit & Opportunity Rovers	90	250	-20-30	> 400 @ 50% DOD	>2	Cycle Life
			Power Rating (kW)	Specific Power (W/kg)	Power Density (W/I)	Efficiency %	Maintenance Frequency (hrs)	
Fuel Cells	Alkaline H2-O2	Apollo, Shuttle	10	90	155	70%	2600	Heavy and Bulky Limited to short missions

The Evolution Of Rechargeable Battery Technology

- Energy storage technologies take 10-15 years for development and infusion into missions.
- We are at the threshold of implementing Li-ion for space missions.

Future Space Missions and their Needs

Solar System Exploration Mission Concepts- Far Term

JUNO (2010-2015)

Europa Orbitter (2015-2020)

Titan Organic Explorer (2015-2020)

Europa Surface and Subsurface (>2020)

Neptune/Triton Orbiter (>2020)

Comet Nucleus Sample Return (>2020)

Venus Sample Return (> 2020)

Mars Exploration Architecture 2009 - 2024

2009	2011/2013	2016	2018	2020	2022	2024
MSL	Scout or Mars Science Orbiter with telecom OR OR	Mid Rovers or AFL OR	Scout	Planetary evolution and meteorology network	MSR orbiter and return capsule	MSR mobile

Summary of Energy Storage Technology Needs of NASA Planetary Science /Solar System Exploration Missions

- 1. Low temperature batteries (primary(<-100°C) and rechargeable (<-60°C) batteries) for planetary probes and Mars surface missions
- **2. High temperature batteries** (> 475 $^{\circ}$ C) for inner planetary missions
- Long calendar life (>15 years), high specific energy (>120 Wh/kg) & radiation tolerant rechargeable batteries for outer planetary missions
- 4. High specific energy (>120 Wh/kg) and Long cycle life (>30,000 cycles) rechargeable batteries for Mars and earth orbital SEC, SEU & origins missions
- **5. High specific energy** primary batteries (>500 Wh/kg) for planetary probes

Exploration Missions (2010-2030)

Crew Exploration Vehicle (CEV)

Crew Launch Vehicle (CLV)

Cargo Launch Vehicle (CaLV)

The role of the Exploration Systems Mission Directorate (ESMD) is to develop a constellation of new capabilities and supporting technologies that enables sustained and affordable human and robotic exploration of the Moon, Mars, and beyond.

NASA's Exploration Roadmap

Summary of Energy Storage Technology Needs of Future Exploration Missions

- 1. Safe, High Specific Energy and Long Life Rechargeable Li-Ion Batteries (32V, 1-15 kWh) are required for Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), Heavy Lift Launch Vehicle (HLLV), Lunar Surface Ascent Module (LSAM), Astronaut Extravehicular Activity (EVA) Suit, Surface systems etc.,
- 2. High specific Power Safe, and Lonf Life Polymer **Electrolyte Membrane and Regenerative Fuel Cells** are required for a wide range of surface elements, including advanced EVA, pressurized and unpressurized rovers, and for large surface power plants as part of a PV/RFC power system.
 - 1KW max class for Advanced EVA PLSS.
 - 2-8 KW class for un-pressurized rovers
 - 25KW class for photovoltaic (PV) / regenerative fuel cell (RFC) power plant and pressurized rover applications.

Lunar Pressurized Rover 15-25 kW

Lunar Habitat (15-25 kW)

Advanced Energy Storage Systems Under Development

Space-Rated Li-Ion Batteries

Product

- Develop space-rated high specific Energy Li-ion batteries for future human and robotic exploration missions
 - 200Wh/kh (Cell)
 - 160 Wh/kg (Battery)
 - 300 Wh/I (Battery)
 - > 30 K cycles (30%DOD)
 - -60 to + 60 C Operation

- 2006-2010
- Sponsor
 - NASA-ESMD

• Team:

- NASA-GRC(lead(, NASA-JSC, NASA-JPL, NASA-MSFC)
- UT Austin, Caltech, USC and Industry:

PEM Fuel Cells

Product

- Develop PEM primary and regenerative fuel cells for future human lunar exploration missions
 - 1-kW max class for advanced EVA portable life support systems (primary fuel cell)
 - 8-kW class for un-pressurized rovers (primary fuel cell)
 - 25-kW class for RFC surface power plants and pressurized rovers (Regenerative Fuel Cell).

Schedule

- 2006-2010

Sponsor

- NASA-ESMD

• Team:

- NASA-GRC (lead), NASA-JSC, NASA-JPL,
- UT Austin, Caltech, USC and Industry:

Lunar Pressurized Rover 15-25 kW

Summary and Conclusions

- Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960
 - Launch Vehicles: Ag-Zn batteries
 - GEO, LEO Spacecraft: Ni-Cd, Ni-H2
 - Space Shuttle: Alkaline Fuel Cells
- Future space missions have unique energy storage requirements
 - Large energy storage Capability (`MWH)
 - Mass and volume efficiency (2-10 X Vs SOP)
 - Long life (> 15 years)
 - Ability to operate in extreme environments
- State of practice primary and rechargeable batteries have limited performance capabilities and do not meet many of the above mentioned needs.
 - Limited life (5-10 years)
 - Limited operating temperature range (-20o-60oC for rechargeable, -40o 60oC)
 - Radiation tolerance poorly understood
 - Heavy and bulky (30 Wh/kg for rechargeable)
- Development of advanced energy storage technologies required to meet future space mission needs
 - Fuel Cells: Medium power PEM Fuel Cells, Regenerative fuel cells, Small fuel cells
 - Primary Batteries: High specific energy, RAD hard Low temperature batteries
 - Rechargeable Batteries: High Specific energy, Long Life, RAD Hard, Low Temp. Batteries
 - Fly wheels

Acknowledgements

The work presented here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Backup slides

Characteristics of SOP Primary Batteries

Туре	Application	Mission	Specific Energy, Wh/kg (b)	Energy Density, Wh/I (b)	Operating Temp. Range, °C	Mission Life (yrs)	Issues
	Cell		238	375	-40 to 70	<10	
Li-SO ₂	Battery	Galileo Probe Genesis SRC MER Lander Stardust SRC	90-150	130-180	-20 to 60	9	Voltage Delay
	Cell		390	878	-30 to- 60	>5	
Li-SOCl ₂	Sojourner Deep Impact DS-2 Centaur Launch batteries		200-250	380-500	-20 to 30	< 5	Severe voltage delay
Li-CF _x	Cell		614	1051	-20 to 60		Poor power capability

Limitations

- Moderate specific energy (100-250 Wh/kg)
- Limited operating temp range (-40 C to 70°C)
- Radiation tolerance poorly understood
- Voltage delay

Characteristics SOP Rechargeable Batteries

Technology	Mission	Specific Energy, Wh/kg	Energy Density, Wh/l	Operating Temp. Range, °C	Design life, Years	Cycle life	Issues
Ag-Zn	Pathfinder Lander	100	191	-20 t0 25	2	100	Electrolyte Leakage Limited Life
Ni-Cd	Landsat, TOPEX	34	53	-10 to 25	3	25-40K	Heavy Poor Low Temp. Perf.
Super Ni -Cd	Sampex Battery, Image	28-33	70	-10 to 30	5	58K	Heavy Poor Low Temp. Perf
IPV Ni -H ₂	Space Station, HST, Landsat 7	8-24	10	-10 to 30	6.5	>60K	Heavy, Bulky Poor Low Temp. Perf
CPV Ni-H ₂	Odyssey, Mars 98 MGS, EOS Terra Stardust, MRO	30-35	20-40	-5 to 10	10 to 14	50 K	Heavy, Bulky Poor Low Temp. Perf
SPV Ni -H ₂	Clementine, Iridium	53-54	70-78	-10 to 30	10	<30 K	Heavy Poor Low Temp. Perf
Li-lon	MER-Rover	90	250	-20to 30	1	>500	Limited Life

Limitations of Ni-Cd & Ni-H2 batteries:

- Heavy and bulky
- Limited operating temp range (-10°C to 30°C)
- Radiation tolerance poorly understood.

Characteristics of Space Fuel cells

Energy Storage Systems: Future Space Applications

Future human and robotic exploration missions require advanced energy storage systems.

• Critical capability requirements include: mass and volume efficiency (2-10 X Vs SOP), long life, safety, and the ability to operate in extreme environments.

Summary

- NASA is planning a number of exciting robotic and human space exploration missions for the exploration of space
 - Robotic Lunar Exploration Missions (>2008)
 - Mars Science Laboratory (2009)
 - Crew Exploration Vehicle (> 2010)
 - Jupiter Polar Orbitter (> 2011)
 - Europa/ Titan Orbiters/Explorers (>2016)
 - Inner Planetary Exploration Missions (>2014)
 - Human Lunar Surface Missions (> 2018)
- Future NASA missions require energy storage devices with mass and volume efficiency, long life capability and can operate safely in extreme environments

Adv. Energy Storage Technologies **Under Development**

PEM Fuel Cells

Li solid state Batteries

